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Abstract. We study shapes given by polynomial lemniscates, and their
fingerprints. We focus on the inflection points of fingerprints, their num-
ber and geometric meaning. Furthermore, we study dynamics of zeros of
lemniscate-generic polynomials and their ‘explosions’ that occur by plant-
ing additional zeros into a defining polynomial at a certain moment, and
then studying the resulting deformation. We call this dynamics polynomial
fireworks and show that it can be realized by a construction of a non-unitary
operad.

1. Introduction

A polynomial lemniscate is a plane algebraic curve of degree 2n, defined as
a level curve of the modulus of a polynomial p(z) =

∏n
k=1(z − zk) of degree

n with its roots zk called the nodes of the lemniscate. Lemniscates have been
objects of interest since 1680 when they were first studied by French-Italian
astronomer Giovanni Domenico Cassini see, e.g., [14], and later christened as
”ovals of Cassini”. 14 years later Jacob Bernoulli, unaware of Cassini’s work,
described a curve forming ‘a figure 8 on its side’, which is defined as a solution
of the equation

(1) (x2 + y2)2 = 2c2(x2 − y2), or |z − c|2|z + c|2 = c4,

where z = x+iy. (Curiously, his brother Johann independently discovered lem-
niscate in 1694 in a different context.) Observe that the level curves |p(z)| = R
can form a closed Jordan curve for sufficiently large R, and split into n dis-
connected components when R → 0+. Great interest in lemniscates in 18th

century was inspired by their links to elliptic integrals. The dynamics of a
lemniscate as R grows is illustrated in Figure 1.

The recent revival of lemniscates owes to the newly emerging field of vision
and pattern recognition. The key idea is to consider the space of 2D ‘shapes’,
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Figure 1. Evolution of a lemniscate of a polynomial of degree 4

domains in the complex plane C bounded by smooth C∞ Jordan curves Γ di-
viding C into two simply connected domains one of which Ω− contains infinity
and the other one, Ω+, is bounded. The study of an enormous space of 2D
shapes was one of the central problems in a program outlined by Mumford at
the ICM 2002 in Beijing [35]. We will also call the boundary curves Γ shapes
for convenience.

Here we focus on ‘fingerprints’ of shapes obtained by means of conformal
welding. Let Γ be a curve defining a shape Ω+, and let φ+ be a conformal
mapping of the unit disk D = D+ onto the domain Ω+ bounded by Γ. The
matching function φ− maps the exterior D− of D onto Ω−. One can either
normalize the interior maps by shifting and scaling Γ so that 0 ∈ Ω+ and the
conformal radius of Ω+ with respect to the origin is 1, or the exterior one by
the ‘hydrodynamical’ normalization

φ−(z) = z +
∞∑
k=1

ck
zk
∈ G,

where by G we denote the class of all analytic functions in D− normalized as
above and C∞ smooth up to the boundary. The conformal welding produces
the function k : [0, 2π] → [0, 2π] defined by eik(θ) = (φ−)−1 ◦ φ+(eiθ), which is
monotone, smooth and ‘2π-periodic’ in the sense that k(θ + 2π) = k(θ) + 2π.
In the first case, the function eik(θ) is a representative of an element of the
smooth Teichmüller space Diff S1/Rot , i.e., the connected component of the
identity of the quotient Lie-Fréchet group Diff S1 of orientation preserving
diffeomorphisms of the unit circle S1 over the subgroup of rotations Rot .
In the second case, eik(θ) is an element of the smooth Teichmüller space
Diff S1/Möb, where Möb is the group PSL(2,C) restricted to S1. The fi-
bration π : Diff S1/Rot → Diff S1/Möb has the typical fiber Möb/S1 ' D−.
The homogeneous spaces Diff S1/Möb and Diff S1/Rot carry the structure
of infinite-dimensional, homogeneous, complex analytic Kählerian manifolds
which appeared in the classification of orbits in the coadjoint representation
of the Virasoro-Bott group see, e.g., [27, 28]. There is a biholomorphic iso-
morphism between G and Diff S1/Möb, see [27].
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Figure 2. Cassini oval (Bernoulli’s lemniscate of degree 2) and
its fingerprint (the marked points are the points of inflection).

The construction of fingerprints is straightforward whereas the reconstruc-
tion of shapes from their fingerprints is a non-trivial task. Let us mention two
more recent reconstructing algorithms: one provided by Mumford and Sharon
[42], the second is the ‘zipper’ algorithm by Marshall [30, 31].

By Hilbert’s theorem, polynomial lemniscates approximate any smooth shape
with respect to the Hausdorff distance in the plane, see e.g., [21] and [46, Ch. 4].
An advantage of this approach is that the fingerprint of a polynomial lemnis-
cate is given by the nth root of a Blaschke product of degree n, which was
proved in [17], see also [48] for a simplified proof and extensions to rational
lemniscates. The reciprocal statement also holds: a fingerprint given by an
n−th root of a Blaschke product of degree n represents the shape given by a
polynomial lemniscate of the same degree [17, 48, 41]. Also, cf. [41] for some
generalizations.

The proof of Hilbert’s theorem was based on approximation of the Riemann
integral by the Riemann sums and the intermediate points of the partitions
were chosen as the nodes of the approximating lemniscates. This approach
is algorithmically poor. Indeed, the more precise approximation we need, the
higher degree of the polynomial we must choose. So, even starting with a
shape already defined by a lemniscate of a low degree, the approximating
lemniscate will be of much higher degree. This problem was addressed by
Rakcheeva in [38, 39]. She proposed a focal algorithm which starts with a
just a polynomial of degree 1, and then, ‘budding’ the zeros of the polynomial
iteratively according to the shape, a better approximation is achieved. Based
on this idea we also start with a lemniscate for the polynomial of degree 1, just

a circle. Then we place a power zn
j
k at a simple zero zk during the j-th step

of the iteration, and then, perform a deformation, i.e., we move the new zeros
without significant change in the structure of lemniscates. From the algebraic
viewpoint, as a result, we arrive at a braid operad which we call the polynomial
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fireworks operad. This way, smooth shapes encode the polynomial fireworks
operad.

The structure of the paper is as follows. First, we observe some simple
properties of real analytic shapes and shapes with corners. Then, we study
the role of inflection points of a fingerprint and their relation to the corre-
sponding shape. Finally, after presenting some necessary definitions and some
background we outline the construction of the polynomial fireworks operad.

Note. Professor Vasil’ev (Sasha to his many friends and colleagues) con-
ceived the idea of this work and enthusiastically worked towards its completion.
The untimely death didn’t let him to see the final version. We shall all miss
him, his friendship, insights and his kindness.

2. On the geometry of fingerprints

In this section we describe some simple relations between shapes and their
fingerprints, which we couldn’t find in the literature.

2.1. Real-analytic fingerprints. As is shown in [27, 28], any smooth in-
creasing function k : [0, 2π]→ [0, 2π], satisfying k(θ+ 2π) = k(θ) + 2π, defines
a smooth shape Γ. However, if Γ is real analytic, it restricts the fingerprints
severely. Indeed, if an analytic shape Γ contains a circular arc, then Γ is a
circle. Furthermore, Γ is bounded, and therefore, a real analytic Γ can not
contain a line segment. At the same time, periodicity of k(θ) implies that the
fingerprint in the square [0, 2π]× [0, 2π] can not contain a segment of a straight
line unless k(θ) = θ + const.

Theorem 1. Let p(z) be a polynomial of degree at least two. If the fingerprint
k(θ) of a shape Γ is given by the relation eik(θ) = p(eiθ) in some closed interval
σ ⊆ [0, 2π], where p(z) is a polynomial, then Γ is not an analytic curve.

Proof. Indeed, if Γ were analytic, then its fingerprint k ∈ Diff S1/Möb would
be given by the relation eik(θ) = (φ−)−1 ◦ φ+(eiθ), where

φ+(ζ) =
∞∑
n=0

anζ
n, and φ−(ζ) = ζ +

∞∑
n=1

bn
ζn
.

Both functions have continuous extension to S1. Moreover, φ− ◦ p(eiθ) and
φ+(eiθ) have analytic extensions to a neighbourhood of the arc {z : z = eiθ, θ ∈
σ}. Thus, by Morera’s theorem, φ− ◦p(eiθ) and φ+(eiθ) are analytic extensions
of each other, hence, equating the coefficients, we conclude that all coefficients
an and bn must vanish except for the case k(θ) = θ. A simple adjustment of
the normalization of φ+(eiθ) yields the proof in the case k ∈ Diff S1/Rot . �
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2.2. Shapes with corners. Let us now remark on the case when the bound-
ary curve Γ has a corner of opening πα (0 ≤ α ≤ 2) at a point zα ∈ Γ. Then
the interior mapping φ+ satisfies the condition

arg[φ+(eit)− φ+(eiθα)]→

{
β as t→ θα + 0,

β + πα as t→ θα − 0,

where zα = φ+(θα). If α = 1, then Γ has a tangent at zα, if α = 0 or α = 2,
then Γ has an outward-pointing or an inward-pointing cusp respectively. If Γ
is smooth except at the point zα, α ∈ (0, 1), then the derivative (φ+)′(ζ) has
a continuous extension to S1 \ {eiθα}, and the functions (ζ − eiθα)1−α(φ+)′(ζ)
and (ζ − eiθα)−α(φ+(ζ) − φ+(eiθα)) are continuous in some neighbourhood of

eiθα in D̂, see e.g., [37, Theorem 3.9]. Similar conclusions hold for the exterior
mapping φ−. The fingerprint k(θ) does not longer represent an element of
Diff S1/Rot or Diff S1/Möb but it belongs to Hom S1/Rot or Hom S1/Möb,
where Hom denotes a group of quasisymmetric homeomorphisms of S1. Since
φ−(eik(θ)) = φ+(eiθ), we have

φ−(ζ) = zα + b1(ζ − eik(θα))2−α + o(|ζ − eik(θα)|2−α)

φ+(ζ) = zα + d1(ζ − eiθα)α + o(|ζ − eiθα|α)

in the corresponding neighbourhoods of the points eik(θα) and eiθα in D̂− and
D̂ respectively. After performing the conformal welding it is clear that the
original fingerprint k(θ) has the singular point θα ∈ [0, 2π), i.e., the graph has
a singularity (k′(θα) = ∞ when α = 2) of order 2(α − 1)/(2 − α), k′(θ) ∼
|θ − θα|

2(α−1)
2−α .

2.3. Dynamics of proper lemniscates when they are approaching crit-
ical points. Let Γ(R) be a polynomial lemniscate of degree n, i.e.,

Γ(R) = {z ∈ C : |p(z)| = R}, p(z) =
n∏
k=1

(z − zk), R > 0.

Without loss of generality let us, whenever possible, assume R = 1. Let us
denote the Riemann sphere by Ĉ = C ∪ {∞}. The lemniscate Γ(1) is called

proper if the region Ω+ = {z ∈ Ĉ : |p(z)| < 1}, is connected. Let us denote

by Ω− the unbounded component of Ĉ \ Γ(1), i.e. Ω− = {z ∈ Ĉ : |p(z)| >
1}. If Γ(1) is proper, the Riemann map φ− : D− → Ω− has a simple inverse

(φ−)−1(z) = n
√
p(z). Let {yj}n−1j=1 denote the critical points of p, i.e. the zeros

of the derivative p′(z) . Then Γ(1) is proper if and only if all the critical points
{yj}n−1j=1 of p lie in Ω+, or, equivalently, all the critical values p(yj) lie in D+,
cf. [17].
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Let B(ζ) stand for the Blaschke product

B(ζ) = eiα
n∏
k=1

ζ − ak
1− ākζ

,

for some real α and |ak| < 1. Then Theorem 2.2 from [17] states that the
fingerprint k : [0, 2π]→ [0, 2π] of the proper lemniscate Γ(1) is given by

(2) eik(θ) = n
√
B(eiθ),

where the branch of n
√
· is appropriately chosen, e.g., by fixing the branch

n
√

1 = 1, and the zeros ak of B(ζ) are the pre-images of the nodes zk under
φ+, repeated according to the multiplicity.

Let us discuss the dynamics of proper lemniscates Γ(R), R > |p(yn−1)|, as
R ↘ |p(yn−1)|, where we first assume that |p(yk)|, k = 1, . . . , n − 1 are the
modules of the critical values of p at the points yk, yn−1 6= yk and |p(yn−1)| >
|p(yk)|, k = 1, . . . , n − 2. When the proper lemniscate approaches the first
critical point, and the domain Ω+ splits up into exactly two domains with
the multiple boundary point of valence 4. Let k(θ) represent an element of
Diff S1/Möb. If R ↘ |p(yn−1)| + 0, then the exterior mapping φ− still exists
at the limit point. In order to give any reasonable sense to what happens
with the interior conformal map let us use the Carathéodory theorem, see
e.g., [37, Theorem 1.8] fixing a point in one of the parts Ω1 or Ω2 of Ω+

bounded by Γ(|p(yn−1)|). For example, we can specify one of the nodes of
the lemniscate z1 ∈ Ω1 as the image of the origin by φ+, φ+(0) = z1, for all
R > |p(yn−1)|. Then, the preimages a1, . . . , am of those nodes z1, . . . , zm that
remain in Ω1 will remain in D, while all other preimages am+1, . . . , an of the
nodes zm+1, . . . , zn ∈ Ω2 will tend to S1 as R ↘ |p(yn−1)|. At the same time,
the preimage of Ω2 will collapse and the Carathéodory convergence theorem
guarantees that the limiting map φ+ will be well-defined in D (the kernel),
φ+ : D→ Ω1, as R↘ |p(yn−1)|. The inverse (φ−)−1 of the exterior map can be
continuously (non-bijectively) extended to ∂Ω1, where the bifurcation point
is understood to be two different points over the same support. Then the
fingerprint k(θ) can be made sense of only between two points corresponding
to the images of the bifurcation point. That is, as in the previous section,
the graph of k(θ) will have the vertical tangent at the points θ11/2 and θ21/2,

θ ∈ [θ11/2, θ
2
1/2], and the order of the singularity is (−3/2), as the lemniscate

has a corner of opening π/2 at the singular point.
This argument can be generalized to the case |p(yn−1)| ≥ |p(yk)|, k =

1, . . . , n − 2 and yn−1 is allowed to coincide with other critical points. In
this case, the domain Ω1 containing a fixed node can have several angular
points of different angles and the fingerprint will have several singularities of
different orders.
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Let us mention in passing that similar arguments apply to Diff S1/Rot
as long as we specify which domain bounded by the critical lemniscate we
consider as the Carathéodory kernel. This can be achieved, e.g., by considering
equivalent polynomials. (Recall that two polynomials p1 and p2 are said to
be from the same conjugacy class [p] if there is an affine map A such that
p2 = A−1 ◦ p1 ◦ A. In this case the geometry of the lemniscates of p1 and
p2 is the same up to scaling, translation and rotation, i.e., as ‘shapes’ those
lemniscates are indistinguishable.)

3. Nodes of lemniscates and inflection points of fingerprints

The first feature one observes looking at a fingerprint of a smooth shape
is that it possesses a number of inflection points. It turns out that lemnis-
cates’ fingerprints must have at least two inflection points. More precisely, the
following is true, cf. Figure 2.

Theorem 2. The fingerprint k(θ) given by (2) has an even number of inflec-
tion points, at least two and at most 4n− 2.

Proof. If we write ak = |ak|eiθk , then

k′(θ) = − i
n

∂

∂θ
logB(eiθ) =

1

n

n∑
k=1

1− |ak|2

1 + |ak|2 − 2|ak| cos(θk − θ)

or, in terms of the Poisson kernel,

k′(θ) =
1

n
Re

n∑
k=1

ζ + ak
ζ − ak

, ζ = eiθ.

Respectively,

k′′(θ) =
1

n
Re

n∑
k=1

−2akiζ

(ζ − ak)2
= − 1

2n

n∑
k=1

(
2akiζ

(ζ − ak)2
− 2ākiζ

(1− ākζ)2

)
.

First, observe that the rational function
∑n

k=1
ζ+ak
ζ−ak

maps the unit circle onto a

smooth closed curve with possible self-intersections. Hence, its real part k′(θ)
attains at least one maximum and one minimum. Therefore, the function k′′(θ)
has at least two zeros in [0, 2π) at which k′′(θ) changes the sign. An elementary
calculus theorem states that for the graph of a differentiable function of one
variable f(x), the number of points c where f has a local extremum in the
interval [a, b] is even if f ′(a) and f ′(b) have the same sign and this number is
odd if the signs are different, assuming that there is a finite number of critical
points in the interval, and that the sign of the derivative changes as we go
from left to right passing through a zero of the first derivative. Consider finite
alternating sequences of, let say, (+) and (-). If one has an equal number of
alternating (+)’s and (-)’s, then the sign changes odd number of times, and if
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the number of alternating (+)’s and (-)’s differs by 1, then the sign changes
even number of times.

Hence, the periodic function k′ has an even number of critical points corre-
sponding to the inflection points of k.

At the same time, the rational function

Z(ζ) = ζ

n∑
k=1

(
2iak

(ζ − ak)2
− 2iāk

(1− ākζ)2

)
has degree 4n, has simple zeros at the origin and ∞, and satisfies the relation
Z̄(ζ) = Z(1/ζ̄). Therefore, if b1, . . . , bm are zeros of the function Z(ζ) in
D\{0}, then 1/b̄1, . . . , 1/b̄m are also its zeros in D− \{∞}, so 0 ≤ m ≤ 2n−1.
The rest of 4n− 2− 2m zeros of Z lie on the unit circle and are precisely the
zeros of the function k′′. �

However, the maximal number 4n − 2 of the inflection points need not be
achieved. The following theorem provides a more detailed explanation of this
phenomenon.

Theorem 3. If all nodes of the n-Blaschke product B lie on the same radius
of D, then the number of the inflection points of the fingerprint k, eik(θ) =
n
√
B(eiθ) is at most 4n− 4. In the particular case when n = 2, the number of

the inflection points is at most 4 (not 6!) for arbitrary position of the nodes
of B.

Proof. Set

Ψ(ζ) =
n∏
k=1

(1− ākζ)2(ζ − ak)2,

and define the polynomial P of the form

P (ζ) = Ψ(ζ)
n∑
j=1

(
aj

(ζ − aj)2
− āj

(1− ājζ)2

)
.

Then

P ′(0)

P (0)
=

Ψ′(0)

Ψ(0)
+ 2

∑n
k=1

(
1

a2k
− ā2k

)
∑n

k=1

(
1

ak
− āk

) =

= −2
n∑
k=1

(
1

ak
+ āk

)
+ 2

∑n
k=1

(
1

a2k
− ā2k

)
∑n

k=1

(
1

ak
− āk

) =
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= 2

∑n
k=1

(
1

a2k
− ā2k

)
−
∑n

k=1

(
1

ak
+ āk

)∑n
k=1

(
1

ak
− āk

)
∑n

k=1

(
1

ak
− āk

) =

= −2

∑
1≤k 6=j≤n

(
1

ak
+ āk

)(
1

aj
− āj

)
∑n

k=1

(
1

ak
− āk

) =

= −4(n− 1)

∑
1≤k<j≤n

1− |akaj|2

akaj∑
1≤k<j≤n

aj(1− |ak|2) + ak(1− |aj|2)
akaj

.

If all ak lie on the same radius, then we have

(3)

∣∣∣∣P ′(0)

P (0)

∣∣∣∣ > 4(n− 1);

and ±1 are among the roots. Therefore, we have |P
′(0)
P (0)
| = 2|

∑2n−2
k=1 cos θk| ≤

4n − 4, which contradicts (3) and finishes the proof of the first statement of
the theorem.

In the case n = 2,

P ′(0)

P (0)
=

4(1− |a1|2|a2|2)
a1(1− |a2|2) + a2(1− |a1|2)

,

so we have

(4)

∣∣∣∣P ′(0)

P (0)

∣∣∣∣ ≥ 4(1− |a1|2|a2|2)
|a1|(1− |a2|2) + |a2|(1− |a1|2)

=
4(1 + |a1||a2|)
|a1|+ |a2|

> 4.

The polynomial P (ζ) is self-inversive because ζ6P̄ (1/ζ̄) = −P (ζ). Therefore,

• If b is a root, then 1/b̄ is also a root;
• If eiθ is a root, then e−iθ is also a root.

If b1, . . . , b6 are the roots of P (ζ), then, by Vieta’s theorem, and recalling that
P (ζ) is self-inversive,

6∑
k=1

bk =
P ′(0)

P (0)
.

Let us assume that there are exactly six zeros e±iθk , k = 1, 2, 3, in S1. Then

P ′(0)

P (0)
= 2(cos θ1 + cos θ2 + cos θ3),
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and so P ′(0)/P (0) is real. There are two possibilities:

(1) |a1| = |a2| and a := a1 = ā2;
(2) |a1| 6= |a2| and a1, a2 are real.

In the first case,

P (ζ) = a(1− āζ)2(1− aζ)2(ζ − ā)2

+ ā(1− āζ)2(1− aζ)2(ζ − a)2

− ā(1− aζ)2(ζ − a)2(ζ − ā)2

− a(1− āζ)2(ζ − a)2(ζ − ā)2,

and this polynomial has ±1 among the roots. Therefore, P
′(0)
P (0)

= 2 cos θ3, which

contradicts (4).
In the second case,

P (ζ) = a1(1− a1ζ)2(1− a2ζ)2(ζ − a2)2

+ a2(1− a1ζ)2(1− a2ζ)2(ζ − a1)2

− a1(1− a2ζ)2(ζ − a1)2(ζ − a2)2

− a2(1− a1ζ)2(ζ − a1)2(ζ − a2)2,
and this polynomial has again ±1 among the roots , which contradicts (4) for
the same reason.

Summarizing, the polynomial P (ζ) has at least one root in D+ and hence,
another in D−, and the maximal number of the inflection points in the finger-
print of a Bernoulli lemniscate is 4. �

Remark 1. The upper bound 4 of zeros of the function Z(ζ) for n = 2 is
achieved. For example, if a1 = −1/2, and a2 = 1/2, then the function has
a double zero at the origin and at infinity, and four zeros 1, i,−1,−i on the
circle S1.

The following statement clarifies the geometric meaning of the fingerprints’
inflection points in general setting.

Theorem 4. The inflection points of the fingerprint k(θ) divide the unit circle
S1 into m arcs γj = {eiθ : θ ∈ [θj, θj+1)}, θm+1 = θ1 + 2π, where j = 1, . . . ,m,
so that the ratio of the rates of change of the harmonic measures of the arc α ⊂
Γ, α = {φ+(s) : s ∈ [θ1, θ)} with respect to (Ω+, 0) and (Ω−,∞) respectively,
alternates its monotonicity.

Proof. The fingerprint k(θ) of a curve α is defined by

eik(θ) = φ−1+ ◦ φ−(eiθ).

We rewrite the last expression as

φ+(eik(θ)) = φ−(eiθ),
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and differentiate it

k′(θ)eik(θ)φ′+(eik(θ)) = φ′−(eiθ)eiθ.

Without loss of generality we can assume that θ1 = 0, and

φ+(1) = φ−(1).

We consider an arc α on ∂Ω+ starting at the point φ+(1).
Let γ+ and γ− denote the images of α by φ−1+ and φ−1− correspondingly,

which can be parametrized as follows: γ−(θ) = eiθ, γ+(θ) = eik(θ). Let us
determine the harmonic measure

ω−(α,∞) =

∫
α

∂g(z,∞)

∂n
|ds|

where g(z,∞) is Green’s function, g(z,∞) = Re G(z,∞), and G(z,∞) is
complex Green’s function, that satisfies

G(z,∞) = log φ−1− (z).

The normal derivative of g(z,∞) has form

∂g(z,∞)

∂n
= Re

(
G′(z,∞)

eiθφ′−
|φ′−|

)
,

and thus the harmonic measure satisfies

ω−(α,∞) = Re

∫
α

G′(z,∞)
eiθφ′−
|φ′−|

|dz| =

∫
γ−

G′(φ−(ζ),∞)ζφ′−(ζ)|dζ| =
∫
γ−

|dζ| = θ,

where ζ = eiθ. We differentiate the resulting harmonic measure ω−(α,∞)

d

dθ
ω−(α,∞) = G′(φ−(eiθ),∞)eiθφ′−(eiθ).

Analogously, we obtain

d

dθ
ω+(α, 0) = G′(φ+(eik(θ)), 0)eik(θ)φ′+(eik(θ))k′(θ).

Thus

k′(θ)
∂

∂θ
ω−(α,∞) =

∂

∂θ
ω+(α, 0).

Therefore, k′(θ) shows the ratio of the rates of change of the respective har-
monic measures.

�
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Figure 3. Polynomial fireworks

Remark 2. We can now rephrase theorem 2 as follows. In the case of a
lemniscate of degree n, the number m of points where the rates of change
of interior and exterior harmonic measures change roles in dominating one
another, is even and is at least 2 and at most 4n− 2.

4. Polynomial fireworks

As it was observed in Introduction, the focal algorithm [38, 39] suggests a
process of construction of lemniscates approximating smooth shapes by bud-
ding the new nodes, i.e., blowing up the old ones iteratively. So any smooth
shape encodes a tree of evolution of lemniscate’s nodes. In this section we
study dynamics of zeros of lemniscate-generic polynomials and their explosion
planting singularities at certain moment, and then, performing their defor-
mation and evolution. We call this dynamics polynomial fireworks and it is
realized by a construction of a non-unitary operad. The term is chosen because
of the similarity to the real fireworks, cf. Figure 3.

4.1. Trees. Following [11], we call a polynomial p(z) lemniscate-generic if the
zeros y1, . . . , yn−1 of p′(z) are distinct, wk = p(yk) 6= 0 for k = 1, . . . , n − 1
and |wi| < |wj| for i < j. Then, only finitely many level sets Γ(R), R > 0 of
|p(z)| are not unions of 1-manifolds. Such a singular level set for a fixed R is
called a big lemniscate. Each big lemniscate contains one singular connected
component, i.e. a ‘figure-eight’, which is called a small lemniscate.

A lemniscate-generic polynomial p(z) of degree n has exactly n− 1 big and,
correspondingly, small lemniscates. If p and p∗ are lemniscate-generic polyno-
mials of degree n, the unions Λ and Λ∗ of all big lemniscates of p and p∗ belong
to the same lemniscate configuration (Λ,C) if there exists a homeomorphism
h : C → C mapping Λ onto Λ∗. Thus, we identify lemniscate configurations
and the isotopy classes of lemniscate-generic polynomials.

Consider the set Pn of all polynomials of degree exactly n and the subset
Ln of lemniscate-generic polynomials. Then Ln is open and Pn \ Ln is a
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union of real hypersurfaces as it will be shown in Section 4.3. The lemniscate
configuration does not change if p varies in a connected component E of Ln.

If [R1, R2] is an interval in R+ containing none of the points |wk| = |p(yk)|,
where wk are the critical values of p, then Γ(R1) is diffeomorphic to Γ(R2) by
a gradient flow as it follows from Morse theory, see [34]. That is |p|2 becomes
a local Morse function whose Hessian matrix is non-degenerate at the critical
points and whose gradient generates a flow between them.

Catanese and Paluszny [11] established a bijection between the connected
components of Ln and the lemniscate configurations of polynomals of degree
n. They also showed bijection between lemniscate configurations and simple
central balanced trees of length n− 1. Let us recall some terminology.

By a tree we understand a connected graph without cycles. A valence of a
vertex is the number of edges adjacent to it. A vertex of valence 3 is called
a node, a vertex of valence 1 is called an end. Any two vertices a and b of a
tree can be connected by a path, i.e., a sequence of edges that connects the
vertices. Any such path is in fact a sub-tree. The distance between a and b is
the number of edges in a shortest path connecting a and b. A chain of edges is
a tree that consists of subsequent edges e1, . . . , en, such that ek shares a vertex
with ek+1, 1 ≤ k ≤ n− 1.

A root radius of a vertex a is the maximal of distances from a to the leaves
of the tree. A tree has vertex v as a center if v is a vertex with a minimal root
radius. A tree is central if it has only one center. The length |T | of a central
tree T is the distance from the center of T to the ends of T . We call a tree
binary if it only has vertices of valence no bigger than 3.

A tree T is called a simple central balanced tree of length n − 1 if it has
n− 1 leaves, it is central, the root radius of the center v is n− 1, the minimal
of distances from v to the leaves is n− 1; the valence of the center is 2, there
is exactly one node at distance j from the center (1 ≤ j ≤ n− 2), and the tree
does not have vertices of valence ≥ 3.

To each polynomial p(z) ∈ Ln we can assign a simple central balanced tree
T of length n−1. The vertices of T of valence ≥ 2 represent connected compo-
nents of big lemniscates. The leaves of T represent the zeros of p. Vertices of T
at distance k from the center (0 ≤ k ≤ n−2) represent connected components
of a big lemniscate Lk: the nodes represent the figure-eight-like branchings
and the vertices of valence 2 represent circumferences. T has (n− 1)(n− 2)/2
vertices corresponding to circumferences, n − 1 vertices corresponding to the
figure-eights, n vertices corresponding to zeros. The edges of T can be in-
terpreted as the doubly connected domains situated between the connected
components of critical level sets.

4.2. Operad. The notion of an operad first appeared and was coined in May’s
book [33] in 1972, and in the original work in algebraic topology by Boardman
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and Vogt [9], in the study of iterated loop spaces formalizing the idea of an
abstract space of operations, see also more modern review in [29]. Thus, it is
not surprising that operad appears in our case of shapes, i.e., 1-D loop space.
Here is a precise definition.

Definition 1. An operad is a sequence {O(n)}∞n=1 of sets (topological spaces,
vector spaces, complexes, etc.), an identity element e ∈ O(1), and composition
map ◦ defined for all positive integers n; k1, k2, . . . , kn

◦ : O(n)×O(k1)× · · · × O(kn) → O(k1 + · · ·+ kn)

θ, θ1, . . . , θn → θ ◦ (θ1, . . . , θn) := (θ; θ1, . . . , θn);

satisfying the following axioms:

• Associativity:

θ ◦ (θ1 ◦ (θ1,1, . . . , θ1,k1), . . . , θn ◦ (θn,1, . . . , θn,kn))

= (θ ◦ (θ1, . . . , θn)) ◦ (θ1,1, . . . , θ1,k1 , . . . , θn,1, . . . , θn,kn).

• Identity: θ ◦ (1, . . . , 1) = θ = 1 ◦ θ.

Important examples of operads are the endomorphism operad, Lie operad,
tree operad, ‘little something’ operad, etc.

A non-unitary operad is an operad without the identity axiom.

4.3. Construction of polynomial fireworks. The idea of the construction
is as follows. We work with the space Mn of complex conjugacy classes [p] of
polynomials p of degree n where affine maps appear as a precomposition from
the right and multiplication by a complex constant acts as a postcomposition
from the left. Since any p ∈ [p] belongs to the same connected component
of Ln, we will write simply p as a representative of [p]. The operation of
composition of lemniscates (which will be used in the operad construction)
consists of planting a zero of higher order in the place of the original zero and
deforming it into simple zeros at the first moment.

Now the question is what happens analytically?
Take a polynomial p ∈ [p] ∈Mn ⊂ Ln, and look at one of its zeros zk. Let us

consider a polynomial q ∈ [q] ∈ Mm ⊂ Lm. We want to define the operation
[p] ◦k [q]. Take another polynomial q̃ ∈ [q] such that all big lemniscates of q̃
are found inside the disk Ur(zk) = {z ∈ C : |z − zk| < r} for a sufficient small
r such that Ur is inside the circular domain of the lemniscate configuration
centered at zk. Construct p̃ = (z − zk)

−1p(z)q̃(z). Components of Ln are
invariant under pre-composition with affine maps so we can assume without
loss of generality that the polynomial pn has one zero at 0 instead of zk. If
the polynomial p̃ is lemniscate generic, then the class [p̃] ∈ Mn+m−1 will be
the result of the superposition [p̃] = [p] ◦k [q]. It is, of course, not true in
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general however it is always possible to find a path from the boundary point
of Lm+n−1 containing the non-lemniscate generic polynomial zm−1p(z) inside
every component of Lm+n−1 performing a deformation of zm−1 to q̃ ∈ [q], which
will be shown in what follows.

Let us first show that given p and q̃ the deformation of zm−1 to q̃ keeps
the roots and critical points of p̃ = z−1p(z)q̃(z) in the same neighbourhood as
those of q̃.

Lemma 1. Let z1, . . . , zn ∈ D = {z ∈ C : |z| < 1} and p(z) =
∏n

k=1(z − zk).
Then ∣∣∣∣p′(z)

p(z)

∣∣∣∣ =

∣∣∣∣ n∑
k=1

1

z − zk

∣∣∣∣ > n

2
, on T = ∂D.

Proof. Indeed, consider the mapping w = 1
1−z of D onto the right half-plane

{w ∈ C : Re w > 1
2
}. Then assume ζk ∈ D we have∣∣∣∣ 1

1− ζk

∣∣∣∣ ≥ Re
1

1− ζk
>

1

2
and

∣∣∣∣ n∑
k=1

1

1− ζk

∣∣∣∣ ≥ Re
n∑
k=1

1

1− ζk
>
n

2
.

If |z| = 1, then ∣∣∣∣ n∑
k=1

1

z − zk

∣∣∣∣ =

∣∣∣∣ n∑
k=1

z̄

1− z̄ zk

∣∣∣∣ =

∣∣∣∣ n∑
k=1

1

1− z̄ zk

∣∣∣∣.
Substituting z̄zk = ζk we finish the proof. �

Corollary 1. Let z1, . . . , zn ∈ {z ∈ C : |z| < ε} and p(z) =
∏n

k=1(z − zk).
Then ∣∣∣∣p′(z)

p(z)

∣∣∣∣ =

∣∣∣∣ n∑
k=1

1

z − zk

∣∣∣∣ > n

2ε
, on {z ∈ C : |z| = ε}.

Theorem 5. Given lemniscate generic polynomials pn(z) = z
∏n−1

k=1(z − zk)

and qm(z) = z
∏m−1

j=1 (z − wj) with

|wj| < ε =
m

2(n− 1) +m
min
k
|zk|,

the critical points of qm and m−1 critical points of P (z) = z−1 qmpn ‘inherited’
from qm lie within the same disk |z| < ε.

Proof. Indeed,∣∣∣∣p′n(z)

pn(z)
− 1

z

∣∣∣∣ =

∣∣∣∣ n−1∑
k=1

1

z − zk

∣∣∣∣ ≤ n−1∑
k=1

1

|z − zk|
≤ n− 1

mink min|z|=ε{|z − zk|}
.
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Using the simple identities min|z|=ε{|z − zk|} = |zk| − ε and

n− 1

mink{|zk| − ε}
=
m

2ε

for ε = m
2(n−1)+m mink |zk| we conclude by Corollary 1 that∣∣∣∣p′n(z)

pn(z)
− 1

z

∣∣∣∣ ≤ m

2ε
<

∣∣∣∣1z +
m−1∑
j=1

(z − wj)
∣∣∣∣ =

∣∣∣∣q′m(z)

qm(z)

∣∣∣∣
on the circle {|z| = ε}. So,∣∣∣∣1z qmp′n − 1

z2
qmpn

∣∣∣∣ < ∣∣∣∣1z q′mpn
∣∣∣∣,

and Rouchè’s theorem implies that the holomorphic functions P ′(z) and 1
z
q′mpn

have the same number of zeros inside the disk {|z| < ε}. Since the function
1
z
pn has no zeros in this disk then P ′(z) and q′m have the same number of zeros

there which proves the theorem. �

Next, we note a conic-like structure of the sets Ln, Lm and Ln+m−1.

Theorem 6. Let a lemniscate generic polynomial pn(z) = z
∏n−1

k=1(z − zk)

belong to a connected component E ′ ⊂ Ln, and let qm(z) = z
∏m−1

j=1 (z − wj)
belong to a connected component E ′′ ⊂ Lm. There is a small deformation of
the polynomial zm−1pn(z) such that the resulting polynomial P (z) belongs to a
connected component E ′′′ ⊂ Ln+m−1 such that its projection to Ln is from E ′

and its projection to Lm is from E ′′.

Proof. Following [12] define a map ψ : C∗ × C× Cn−1 → Vn by

ψ(an, a0, y) = nan

(∫ n−1∏
k=1

(z − yk)dz

)
+ a0, an ∈ C∗, a0 ∈ C, y ∈ Cn−1,

where C∗ = C \ {0}, Vn is the space of polynomials of degree n, and yk, k =
1, . . . , n− 1 are the critical points of the polynomial pn. The set ψ−1(Vn \ Ln)
is a real hypersurface whose equation is

∏
i<j |Py(yi)| − |Py(yj)| = 0, where

Py(z) = n

(∫ n−1∏
k=1

(z − yk)dz

)
.

All connected components of Ln have a unique common point at their bound-
aries that corresponds to the polynomial zn. So starting from this point we
can enter any of them. The polynomial zkpn(z), pn ∈ Ln, is in the boundary
of Ln+k and ψ−1(zkpn(z)) ∈ ∂ψ−1(Ln+k), ψ−1(Ln+k) = ψ−1(Ln) × ψ−1(Lk),
and there is a projection to ψ−1(Ln) defined by zkpn(z) → pn(z). Since zk is
a common boundary point for all connected components of Lk, there exists a
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path connecting the boundary point zk ∈ ∂Lk and an arbitrary point in every
connected component of Lk.

Figure 4. Projections of ψ−1(z−1pnqm)

Applying now these arguments to the polynomials P (z) and zm−1pn(z) yields
the conclusion of the theorem. (Figure 4 gives a schematic idea how these
projections are realized for ψ−1(Ln+m−1).) �

4.4. Operad construction. We construct a non-unitary operad on central
binary trees with labelled ends with numbers assigned to them. Let us note
that central balanced trees representing lemniscate generic polynomials are in
particular central and binary.

A generic element of O(k) is a central binary tree T with k labelled ends,
together with a sequence of admissible pairs of numbers ((l1, v1), . . . , (lk, vk)) .
The tuple (v1, . . . , vk) consists of labels of the ends of T . Let s be the distance
from the end vj to the closest vertex with valence greater than one, which is
either the center or one of the nodes. If lj ≥ −s + 1, we call the number lj
and the pair (lj, vj) admissible.

Example 1. The tree T on figure 5 is a central balanced tree of length 2. The
center of the tree (marked by white) is the closest to the end 3 vertex of
valence larger than one. The distance s between the end 3 and the center is
2. This means that an admissible number assigned to the vertex 3 must be be
greater or equal −1. Vertices 1 and 2 can come in pair with some non-negative
integers. For example, T together with ((0, 1), (0, 2), (1, 3)) is an element of
O(3).

We define the identity 1 ∈ O(1) to be one labelled vertex with 0 assigned
to it.



18 A. FROLOVA, D. KHAVINSON, AND A. VASIL’EV

Figure 5. Attaching a tree to an end: example

In what follows we define the non-unitary operad composition operation.
Given an element of O(k) which is a central binary tree T with k pairs(

(l01, v
0
1), . . . , (l0k, v

0
k)
)

and k elements t1 ∈ O(j1) with pairs ((l1, v1), . . . , (lj1 , vj1)), . . . , tk ∈ O(jk)
with pairs ((ln−jk+1, vn−jk+1), . . . , (ln, vn)), where n = j1 + · · ·+ jk. The result

T̃ = (T ; t1, . . . , tk) of the composition of T and t1, . . . , tk must be an element of
O(n), i.e. a central binary tree with n ends together with n admissible pairs.

Let us first describe the construction of the tree T̃ . As index p varies from 1
to k, we attach the center of the tree tp to the end v0p ”at distance” l0p from the

end. Namely, if l0p ≥ 0, we attach the center of tree tp to a chain of l0p edges,

and then we attach the resulting tree to the end v0p. If, in turn, the number l0p
is negative, we erase a chain of |l0p| edges containing v0p and attach the center
of the tree tp to the vertex which connected the deleted chain and the rest of
the tree.

Example 2. Let T on figure 5 have pairs ((1, 3), (0, 1), (0, 2)). The second from
the right tree on figure 5 is the result of attaching the tree t1 to the end 3
”at distance” 1. Suppose now T has pairs ((−1, 3), (0, 1), (0, 2)), the result of
attaching the tree t1 is the tree on the right hand side of the figure.

Remark 3. Let β be the closest to v0j vertex of valence larger than one in

T . An admissible number l0j is defined so that we never erase β and have a
freedom to attach a tree closer or further from β.

When all t1, . . . , tk are attached to T , the resulting tree T is not necessarily

central. We transform the resulting tree into a central tree T̃ .

The former center v of T will be the center of the tree T̃ , i.e. the distance

from the center v of of T̃ to all the ends of T̃ must be the same. The possible
distances from v to the ends of T are Sp = |T | + l0p + |tp|, where |T | and |tp|
are lengths of T and tp respectively where p varies from 1 to k. The maximum

S among Sp, 1 ≤ p ≤ k, will be the length of T̃ , i.e.



POLYNOMIAL LEMNISCATES AND THEIR FINGERPRINTS... 19

Figure 6. Composition of trees: example

(5) |T̃ | = | (T ; t1, . . . , tk) | = S = |T |+ max
1≤j≤k

(
l0j + |tj|

)
.

If an end of T is at distance Sp from v, we add a chain of

δp := S − Sp = max
1≤j≤k

(
l0j + |tj|

)
− (l0p + |tp|)

edges to the end, the new end inherits the label.

Example 3. Let T on figure 6 have pairs ((1, 3), (0, 2), (0, 1)). Let us construct
the composition of the trees T and (t1, t2, 1). We will not specify the pairs
assigned to the trees t1 and t2 for now and focus on the construction of the
tree. We attach the tree t1 to the vertex 3 ”at distance” 1, the tree t2 to the
vertex 2 and the identity element 1 to the vertex 1. The tree T is shown on
the figure 6 with solid lines. The maximal distance from the ends of T to the
former center v is 4. We attach a chain of 2 edges to the vertex 1 and chains
of 1 edge to the vertices 7 and 6, the added edges are shown with dashed lines.

The new ends inherit the labels of the old ends. The resulting tree T̃ is a
central tree of length 4 with 5 ends.

The resulting tree T̃ has j1 + · · ·+ jk = n vertices

v1, . . . , vj1 , vj1+1, . . . , vj1+j2 , . . . , vn−jk+1, . . . , vn.

Given an integer m between 1 and n, assume j1 + · · · + jp−1 + 1 ≤ m ≤
j1 + · · · + jp, for some 1 ≤ p ≤ k. To the vertex vm, which is inherited from
tp, we assign the number lm− δp, where δp is defined above and represents the

difference between the length S of the tree T̃ and the distance Sp from the

vertex vm to v in T . The pairs assigned to the tree T̃ are as follows:(
(l1 − δ1, v1), . . . , (lj1 − δ1, vj1), (lj1+1 − δ2, vj1+1), . . . , (lj1+j2 − δ2, vj1+j2), . . . ,

(ln−jk+1 − δk, vn−jk+1), . . . , (ln − δk, vn)
)
.

This concludes the construction of the composition (T ; t1, . . . , tk) ∈ O(n).
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Example 4. In the previous example we have δ1 = 0, δ2 = 1, δ3 = 2. Let t1
and t2 have sequences ((0, 4), (1, 5)) and ((1, 7), (2, 6)) correspondingly. The
identity element is a vertex with a pair (0, 1).

The tree T̃ is assigned the following sequence:

((0, 4), (1, 5), (0, 7), (1, 6), (−2, 1)) .

Let us verify that the number lm − δp assigned to the end vm in T̃ =
(T ; t1, . . . , tk) is admissible. The integer lm assigned to the vertex vm in tp
is admissible, i.e.,

(6) lm ≥ −s+ 1,

where s is is the distance from vm to the closest vertex of valence greater than

one in tp. Note that the former center of tp becomes a node in T̃ . The end vm
of T̃ is at distance s+δp from the closest node of T̃ , and this distance is shorter

than the distance to the center v of T̃ . An admissible number assigned to vm
in T̃ should be larger or equal to −(s+ δp) + 1. By construction we assign to
vm a number lm − δp, from (6) we obtain that lm ≥ −s + 1 − δp. Therefore,

the new number lm for the vertex vm of the composition T̃ is admissible and
thus the operation of composition of elements of O(k) is well-defined.

Theorem 7. The sequence {O(n)}∞n=1 of central binary trees with labelled
vertices and admissible numbers assigned to them, together with operation of
composition defined above, forms a non-unitary operad.

The operation of composition is defined in accordance with definition 1 of
an operad. We only need to show that the associativity axiom holds. In order
to do that consider an element T ∈ O(k), with a sequence(

(l01, v
0
1), . . . , (l0k, v

0
k)
)
,

k elements tJ ∈ O(jJ) 1 ≤ J ≤ k with pairs(
(lj1+···+jJ−1+1, vj1+···+jJ−1+1), . . . , (lj1+···+jJ , vj1+···+jJ )

)
,∑k

1 jJ = n, and n elements τL ∈ O(mL), 1 ≤ L ≤ n, with sequences(
(λm1+···+mL−1+1, βm1+···+mL−1+1), . . . , (λm1+···+mL , βm1+···+mL)

)
.

We need to prove that
(7)

((T ; t1, . . . , tk); τ1, . . . , τn) = (T ; (t1; τ1, . . . , τj1), . . . , (tk; τn−jk+1, . . . , τn)) .

We denote the left hand side element by T1 and the right hand side element
by T2.



POLYNOMIAL LEMNISCATES AND THEIR FINGERPRINTS... 21

Let us first show that the trees T1 and T2 coincide. Then we conclude the
proof by showing that the elements T1 and T2 have the same sets of pairs.

Lemma 2. The trees T1 and T2 coincide.

Proof. Let us show that the trees T1 and T2 have the same length
First, we calculate |T1| = | ((T ; t1, . . . , tk); τ1, . . . τn) |.
By (5) the length | (T ; t1, . . . , tk) | is given by

| (T ; t1, . . . , tk) | = |T |+ max1≤j≤k{l0j + |tj|}.
The tree (T ; t1, . . . , tk) has vertices

v1, . . . , vj1 , . . . , vn−jk+1, . . . , vn

with numbers

l1 − (max1≤j≤k{l0j + |tj|} − (l01 + |t1|)), . . . ,

lj1 − (max1≤j≤k{l0j + |tj|} − (l01 + |t1|)), . . . ,
ln−jk+1 − (max1≤j≤k{l0j + |tj|} − (l0k + |tk|)), . . . ,

ln − (max1≤j≤k{l0j + |tj|} − (l0k + |tk|)).
Thus the length of ((T ; t1, . . . , tk); τ1, . . . τn) is

|T |+ max1≤j≤k{l0j + |tj|}+ max1≤m≤n{lm + |τm|} =

(8) = |T |+ max1≤m≤n{|τm|+ lm + l0j(m) + |tj(m)|}.
Here j(m) = 1 if m = 1, . . . , j1, j(m) = 2 if m = j1 + 1, . . . , j1 + j2, and so on.
Given m, the tree τm is glued to an end of some tree tj, so j = j(m) is the
index of this tree, which is uniquely determined by m.

Let us calculate now |T2| = | (T ; (t1; τ1, . . . τj1), . . . , (tk; τn−jk+1, . . . , τn)) |.

(9) |T2| = |T |+ max1≤p≤k{l0p + |tp|+ max
j1+···+jp−1+1≤m≤j1+···+jp

{lm + |τm|}}.

Given 1 ≤ p ≤ k, we define m(p), 1 ≤ m ≤ n, to be indices of τm that
are glued to the tree tp. Given p, the values of m(p) are integers between
j1 + · · ·+ jp−1 + 1 and j1 + · · ·+ jp. The expression (9) can be rewritten as

(10) |T2| = |T |+ max1≤p≤kmaxm(p){l0p + |tp|+ lm + |τm|}.
The expressions (10) and (8) coincide. Therefore, the trees T1 and T2 have

the same length.
Let us show now that the trees T1 and T2 coincide.
Let us fix 1 ≤ p ≤ k and let v be the center of tp. The center of tp is glued

to the end v0p of T ”at distance” l0p during the construction of both T1 and T2.

We denote by β a vertex in T of valence greater than one closest to v0p. The

vertex β is either the center, or a node of T . The end v0p is attached to β by a
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chain of edges. During construction of T1 and T2 we replace this chain of edges
with a new one and attach the center v of tp to it. It is clear that the distance
from v to the center of T in both cases is the same and equal to |T |+ l0p. We
can conclude that the trees tp, 1 ≤ p ≤ k are attached to the same positions
in T1 and T2.

Let us now denote by b the center of τL, 1 ≤ L ≤ n. Suppose τL is attached
to the end vL of tJ for some J between 0 and k. We denote by V the vertex of
tJ of valence larger than one, that is closest to vL. The end vL is attached to V
by a chain of edges. We replace this chain of edges with another one and attach
the center b of τL to the new chain. The distance from b to V is |tJ |+lL both, in
(T ; (t1; τ1, . . . τj1), . . . , (tk; τn−jk+1, . . . , τn)), and ((T ; t1, . . . , tk); τ1, . . . τn). We
can conclude that the trees τL, 1 ≤ L ≤ n are attached to the same positions
in T1 and T2.

In addition, the lengths of T1 and T2 coincide, thus the trees T1 and T2
coincide.

�

The following lemma concludes the proof of the theorem.

Lemma 3. The pairs assigned to T1 and T2 are identical.

Proof. First we calculate the sequences for the left hand side of (7).
The composition (T ; t1, . . . , tk) is an element in O(n) with the sequence

((l1 − (S − S1), v1), . . . , (lj1 − (S − S1), vj1),

(lj1+1 − (S − S2), vj1+1), . . . , (lj1+j2 − (S − S2), vj1+j2), . . . ,

(ln−jk+1 − (S − Sk), vn−jk+1), . . . , (ln − (S − Sk), vn)) ,

where SJ = |T |+ l0J + |tJ |, 1 ≤ J ≤ k; S is the maximum of SJ . S is the length
of the tree (T ; t1, . . . , tk).

Composition ((T ; t1, . . . , tk); τ1, . . . τn) is an element in O(m1 + · · · + mn).
Let L be an integer between 1 and n. Recall that n = j1 + · · · + jk and
suppose j1 + · · · + jp−1 + 1 ≤ L ≤ j1 + · · · + jp for some 1 ≤ p ≤ k. Note
that 1 ≤ L − (j1 + · · · + jp−1) ≤ jp. We attach the tree τL to the end vL ”at
distance” lL − (S − Sp). We define

∆L = |(T ; t1, . . . , tk)|+ lL − (S − Sp) + |τL|,
which can be rewritten as

∆L = lL + Sp + |τL|,
and let ∆ denote the maximum of ∆L. We obtain

∆ = | ((T ; t1, . . . , tk); τ1, . . . τn) |.
The composition ((T ; t1, . . . , tk); τ1, . . . τn) has the following sequence:
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((λ1 − (∆−∆1), β1), . . . , (λm1 − (∆−∆1), βm1),

(λm1+1 − (∆−∆2), βm1+1), . . . , (λm1+m2 − (∆−∆2), β
2
m1+m2

), . . . ,

(λm1+···+mn−1+1 − (∆−∆n), βm1+···+mn−1+1), . . . ,

(λm1+···+mn − (∆−∆n), βm1+···+mn)) .

Let R be an integer between 1 and m1 + · · ·+mn. Suppose

m1 + · · ·+mL−1 + 1 ≤ R ≤ m1 + · · ·+mL

for some 1 ≤ L ≤ n and, also, assume

j1 + · · ·+ jp−1 + 1 ≤ L ≤ j1 + · · ·+ jp

for some 1 ≤ p ≤ k. The R−th pair in the sequence assigned to T1 has form
(λR − (∆−∆L), βR), where

∆−∆L = | ((T ; t1, . . . , tk); τ1, . . . τn) | − (lL + Sp + |τL|) =

= | ((T ; t1, . . . , tk); τ1, . . . τn) | −
(
lL + |T |+ l0p + |tp|+ |τL|

)
.

Let us now write down the sequence of pairs for T2.
Let 1 ≤ L ≤ n and also assume that j1 + · · ·+ jp−1 + 1 ≤ L ≤ j1 + · · ·+ jp

for some 1 ≤ p ≤ k. We define σL = |tp| + lL + |τL|, Σp is the maximum of
σL, where j1 + · · · + jp−1 + 1 ≤ L ≤ j1 + · · · + jp, it is the length of the tree
(tp; τj1+···+jp−1+1, . . . , τj1+···+jp).

Given p between 1 and k, the element (tp; τj1+···+jp−1+1, . . . , τj1+···+jp) has the
sequence((

λm1+···+mj1+···+jp−1
+1 − (Σp − σj1+···+jp−1+1), βm1+···+mj1+···+jp−1

+1

)
, . . . ,

(
λm1+···+mj1+···+jp−1+1

− (Σp − σj1+···+jp−1+1), βm1+···+mj1+···+jp−1+1

)
, . . . ,

(
λm1+···+mj1+···+jp−1+1 − (Σp − σj1+···+jp), βm1+···+mj1+···+jp−1+1

)
, . . . ,(

λm1+···+mj1+···+jp − (Σp − σj1+···+jp), βm1+···+mj1+···+jp

))
.

We attach the center of the tree (tp; τj1+···+jp−1+1, . . . , τj1+···+jp) to the vertex
v0p ”at distance” l0p, as p varies between 1 and k.

We define Qp = |T | + l0p + |(tp; τj1+···+jp−1+1, . . . , τj1+···+jp)| = |T | + l0p + Σp.
We define Q to be the maximum among Qp, 1 ≤ p ≤ k; Q is the length of the
tree T2.

Let us choose R, where 1 ≤ R ≤ m1 + · · ·+mn, and write down the R−th
pair of T2. Suppose m1 + · · · + mL−1 + 1 ≤ R ≤ m1 + · · · + mL for some
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1 ≤ L ≤ n and suppose j1 + · · · + jp−1 + 1 ≤ L ≤ j1 + · · · + jp for some
1 ≤ p ≤ k. The R−th pair in the sequence for T2 has the form

(λR − (Σp − σL)− (Q−Qp), βR) .

Let us rewrite

(Σp − σL) + (Q−Qp) = Σp − (|tp|+ lL + |τL|) + |T2| − (|T |+ l0p + Σp) =

= |T2| −
(
|tp|+ lL + |τL|+ |T |+ l0p

)
.

We can see that the R−th pair for ((T ; t1, . . . , tk); τ1, . . . τn) coincides with
the R−th pair for (T ; (t1; τ1, . . . τj1), . . . , (tk; τn−jk+1, . . . , τn)).

�

Remark 4. In section 4.3 we discussed the composition [p] ◦k [q] of conjugacy
classes of lemniscate generic polynomials p ∈ Ln and q ∈ Lm.

Let T and t be the central balanced trees of length n − 1 and m − 1 which
correspond to p and q respectively. Let us label the zeros of p, and respectively
ends of T , by numbers from 1 to n.

Geometrically, composition [p] ◦k [q] can be described as follows. We take a
neighbourhood containing the big lemniscates of q, shrink it and replace with it
a small neighbourhood of the zero k of p. In terms of trees this is analogous to
gluing the tree t to the vertex k of T ”at distance” 0. To obtain the lemniscate
configuration of [p] ◦k [q] we add extra circumferences around the zeros of p,
or, in terms of trees, extend the tree (as described in section 4.4) so that it
becomes a central balanced tree of length n+m− 1.

The composition of p and q can be realized as composition of an element
T ∈ O(n) with the tuple (1, . . . , 1, t, 1, . . . , 1) of length n, there t ∈ O(m)
in at the k−th place in the tuple, the trees T and t represent p and q, 1 is
the identity in O(1). The polynomial fireworks can be realized through the
non-unitary operad constructed in section 4.4. Thus, the goal we set in the
Introduction has been achieved.
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[21] D. Hilbert, Über die Entwickelung einer beliebigen analytischen Function einer Vari-
abeln in eine unendliche, nach ganzen rationalen Functionen fortschreitende Reihe,
Gött. Nachr. 1897 (1897), 63–70.

[22] Y.-Zh. Huang, J. Lepowsky, Vertex operator algebras and operads. The Gelfand Math-
ematical Seminars, 1990–1992, Birkhäuser, Boston, MA, 1993, 145–161.
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